Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents.

نویسندگان

  • Andrew W Varga
  • Li-Lian Yuan
  • Anne E Anderson
  • Laura A Schrader
  • Gang-Yi Wu
  • Jennifer R Gatchel
  • Daniel Johnston
  • J David Sweatt
چکیده

Calcium-calmodulin-dependent kinase II (CaMKII) has a long history of involvement in synaptic plasticity, yet little focus has been given to potassium channels as CaMKII targets despite their importance in repolarizing EPSPs and action potentials and regulating neuronal membrane excitability. We now show that Kv4.2 acts as a substrate for CaMKII in vitro and have identified CaMKII phosphorylation sites as Ser438 and Ser459. To test whether CaMKII phosphorylation of Kv4.2 affects channel biophysics, we expressed wild-type or mutant Kv4.2 and the K(+) channel interacting protein, KChIP3, with or without a constitutively active form of CaMKII in Xenopus oocytes and measured the voltage dependence of activation and inactivation in each of these conditions. CaMKII phosphorylation had no effect on channel biophysical properties. However, we found that levels of Kv4.2 protein are increased with CaMKII phosphorylation in transfected COS cells, an effect attributable to direct channel phosphorylation based on site-directed mutagenesis studies. We also obtained corroborating physiological data showing increased surface A-type channel expression as revealed by increases in peak K(+) current amplitudes with CaMKII phosphorylation. Furthermore, endogenous A-currents in hippocampal pyramidal neurons were increased in amplitude after introduction of constitutively active CaMKII, which results in a decrease in neuronal excitability in response to current injections. Thus CaMKII can directly modulate neuronal excitability by increasing cell-surface expression of A-type K(+) channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Angiotensin II decreases neuronal delayed rectifier potassium current: role of calcium/calmodulin-dependent protein kinase II.

Angiotensin II (Ang II) acts at specific receptors located on neurons in the hypothalamus and brain stem to elicit alterations in blood pressure, fluid intake, and hormone secretion. These actions of Ang II are mediated via Ang II type 1 (AT1) receptors and involve modulation of membrane ionic currents and neuronal activity. In previous studies we utilized neurons cultured from the hypothalamus...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

The eag potassium channel binds and locally activates calcium/calmodulin-dependent protein kinase II.

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the regulation of neuronal excitability in many systems. Recent studies suggest that local regulation of membrane potential can have important computational consequences for neuronal function. In Drosophila, CaMKII regulates the eag potassium channel, but if and how this regulation was spatially restricted was unknown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 14  شماره 

صفحات  -

تاریخ انتشار 2004